

Certifiable Failure Rate Validation using Importance Sampling + Deep Learning

Mansur M. Arief

Research Engineer, Stanford Intelligent Systems Lab and Mineral-X mansur.arief@stanford.edu

About Me

- Research Engineer, Stanford Intelligent Systems Lab and Mineral-X
- Postdoc, AeroAstro, Stanford, 2023-2024
- PhD in MechE, Carnegie Mellon, 2023
 - Dissertation at Safe Al Lab: Certifiable Evaluation for Safe Intelligent Autonomy
- MSE, Industrial & Operations Engineering,
 University of Michigan, Ann Arbor
- BE, Industrial and Systems Engineering,
 Sepuluh Nopember Institute of Technology, Indonesia

Cyber-Physical Systems (CPSs) are everywhere



Autonomous vehicles

Exploratory robots

Aircraft collision avoidance systems

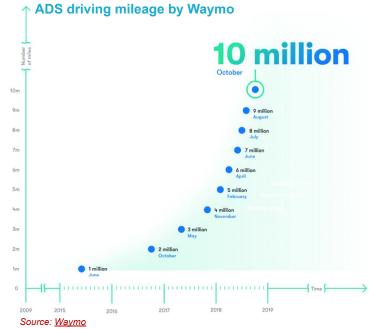
- Interacting with humans more intensively and collaboratively
- Making more important, even safety-critical, decisions

Safe CPS are hard to validate

• If the failure rate is μ , we need $1/\mu$ samples to observe the first (random) failure

• Monte Carlo sampling estimates have huge relative variance $Var(\mu_{est})/\mu$

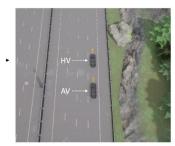
Smaller μ requires larger sample size
 (i.e. curse of rarity)



Airplane-level safety requires HUGE simulation runs,

I ran simulations for about a month to compare 99.99% accuracy CV models.

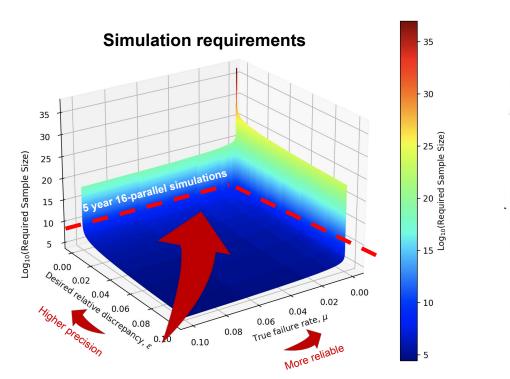
(a) Schematic diagram

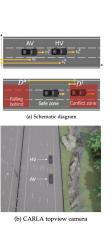


(b) CARLA topview camera

Even more for validating a 10⁻⁵ failure rate AV model.

Airplane-level safety requires HUGE simulation runs,

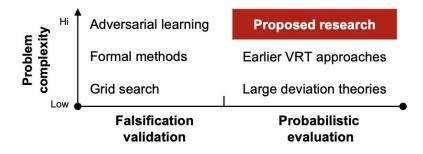




Major safety validation goals

- Falsification: find a failure trajectory that violates specification
- Most-likely failure: find failure trajectory with maximum likelihood
- Failure probability: infer the violation rate of the specification under the disturbance model

Probabilistic evaluation



How to generate validation test cases?

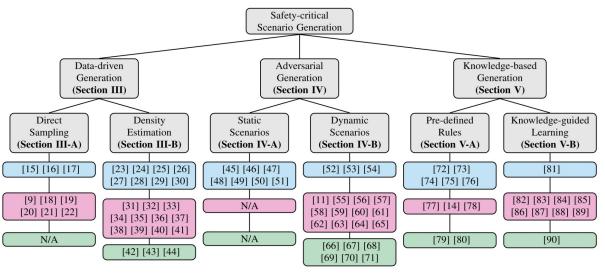
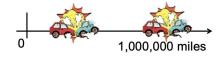


Fig. 2. Taxonomy of safety-critical scenarios generation methods. The colors of boxes denote the modules of the AV system that the generation algorithms target on Perception, Planning, Control.

If failures are rare, importance sampling is useful

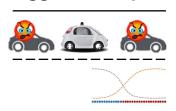
Naturalistic operating conditions:

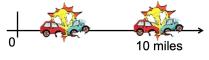


$$\hat{\mu}_n = rac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \in \hat{\mathcal{S}}_\gamma)$$

Rather than using Monte Carlo estimate,

Aggressive operating conditions:





$$\hat{\mu}_n = rac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \in \hat{\mathcal{S}}_\gamma) rac{p(X_i)}{ ilde{p}(X_i)}$$

use importance sampling estimate to get an unbiased result.

IS theoretical guarantees

• Importance Sampling (IS) uses proposal distribution \tilde{p} and computes

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \in \mathcal{S}_{\gamma}) L(X_i) = \frac{1}{n} \sum_{i=1}^n Y_i L(X_i),$$

$$L(X_i) = \frac{p(X_i)}{\tilde{p}(X_i)}$$
. \Rightarrow called the importance ratio

IS theoretical guarantees

IS is provably unbiased

$$\mathbb{E}_{X \sim \tilde{p}}[\hat{\mu}_n] = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^n \mathbb{1} \left(X_i \in \mathcal{S}_{\gamma}\right) L(X_i)\right]$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[\mathbb{1} \left(X_i \in \mathcal{S}_{\gamma}\right) \frac{p(X_i)}{\tilde{p}(X_i)}\right]$$

$$= \frac{1}{n} \sum_{i=1}^n \int_{\mathbb{R}^d} \mathbb{1} \left(X_i \in \mathcal{S}_{\gamma}\right) \frac{p(X_i)}{\tilde{p}(X_i)} \tilde{p}(X_i) dX_i$$

$$= \frac{1}{n} \sum_{i=1}^n \int_{\mathbb{R}^d} \mathbb{1} \left(X_i \in \mathcal{S}_{\gamma}\right) p(X_i) dX_i$$

$$= \mu.$$

IS theoretical guarantees

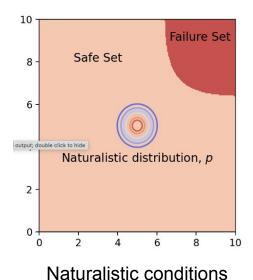
- IS **reduces variance** if the proposal distribution: $\tilde{p}(x) \propto \mathbb{1}$ ($x \in \mathcal{S}_{\gamma}$) p(x), i.e. the naturalistic distribution conditional on the failure set.
- Cross Entropy (CE) minimizes the KL-divergence between the proposal and this theoretically optimal distribution iteratively

$$\max_{\theta \in \Theta} \frac{1}{n_j} \sum_{i=1}^{n_j} \mathbb{1}\left(X_i \in \mathcal{S}_{\gamma}\right) \frac{p(X_i)}{p_{\theta_i}(X_i)} \ln p_{\theta}(X_i)$$

under some parametric class Θ .

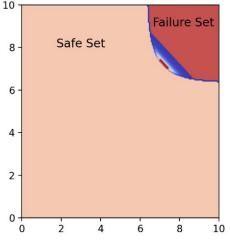
IS underlying intuition

 IS skews the distribution toward failures and use likelihood ratio as weights to compute an unbiased estimate.



Safe Set

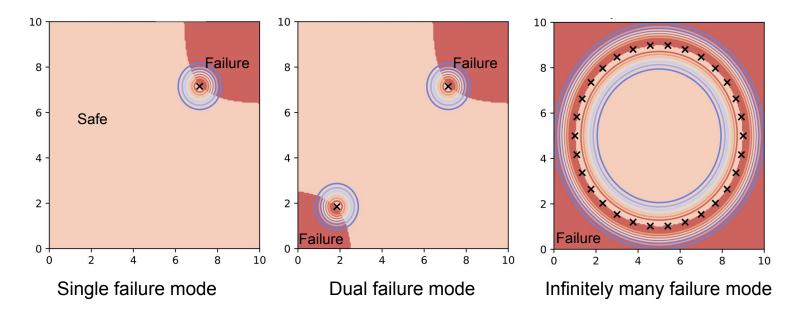
Proposal dist., \tilde{p}



Skewed/aggressive conditions

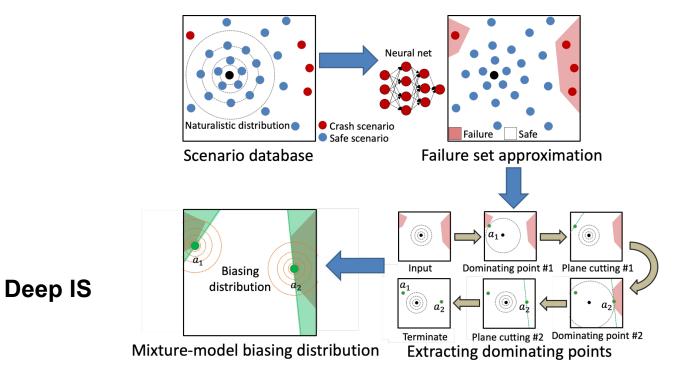
Likelihood ratio conditional on the failure set

Optimal proposal is centered at all failure modes boundary



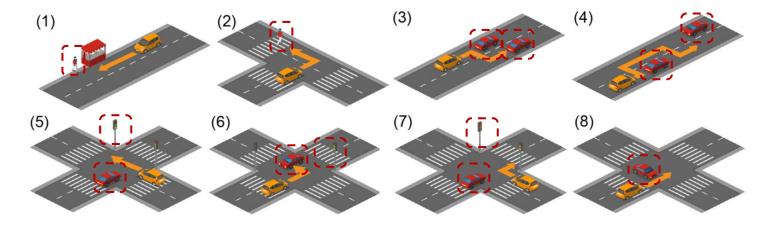
Because otherwise, the likelihood ratio $L(X_i) = rac{p(X_i)}{ ilde{p}(X_i)}$ can blow up

How do we find the failure boundaries?



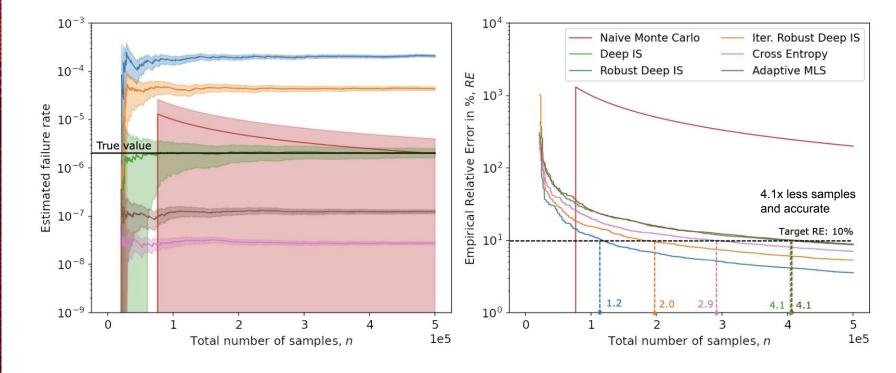
Deep IS numerical experiments

• **Driving scenarios**: Eight driving scenarios as defined in SafeBench [1].



- (1) Straight Obstacle, (2) Turning Obstacle, (3) Lane Changing, (4) Vehicle Passing,
- (5) Red-light Running, (6) Unprotected Left-turn, (7) Right-turn, and (8) Crossing Negotiation.

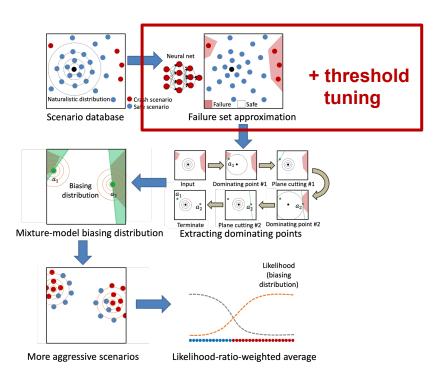
Numerical results

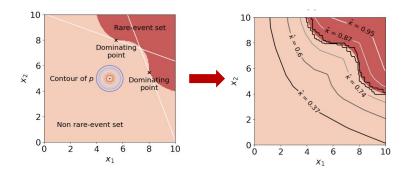


Highlights

- Looks good in paper, but in practice, we may not know if we have accurate failure set approximation
- What if we are inaccurate...
 - o can we avoid underestimating the failure rate at all cost?
 - can we terminate early if an overestimate is allowed?

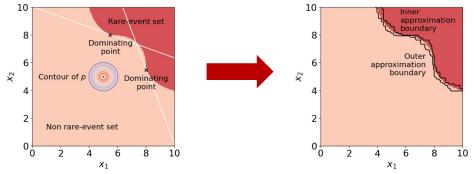
Deep-PrAE: Using failure set outer-approximation



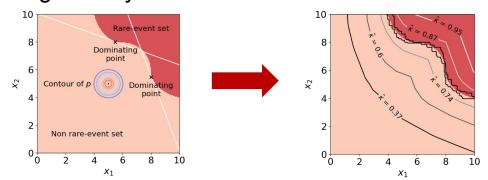


Obtaining outer approximation

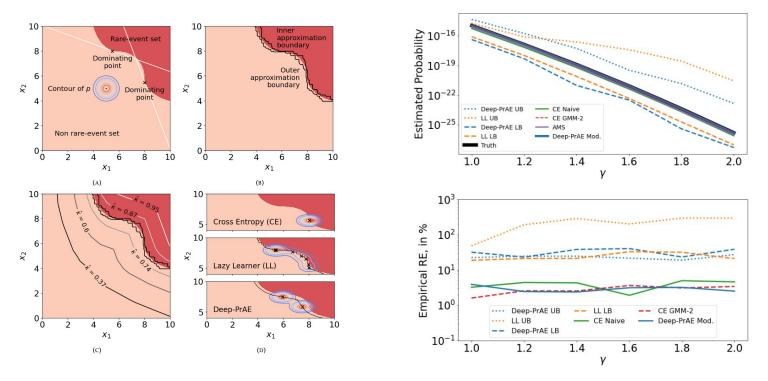
Option #1 using an orthogonally monotone hull



Option #2 gradually increase the decision threshold



Deep-PrAE estimates failure rate upper bound efficiently



Limitation

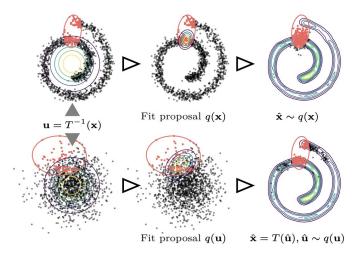
- Threshold tuning gives a loose over-approximation in higher dimensional space.
- Over-approximation might not easy to guarantee.

Key Takeaways

- Good to use if an failure rate upper-bound is sufficient for the task.
- Not very useful if accurate failure rate estimation is desired.
- Scaling up to high-dimensional problems is a major challenge.
- Learn more about importance sampling theory:
 - Bucklew, James Antonio, and J. Bucklew. Introduction to rare event simulation. Vol. 5. New York: Springer, 2004.

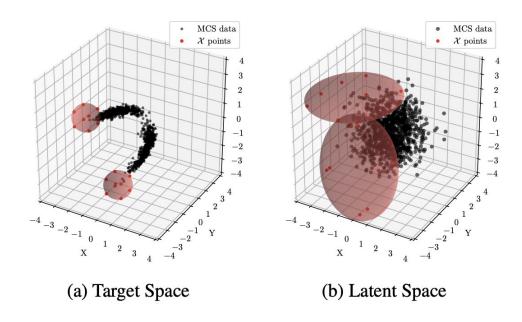
Some more recent work: Normalizing Flow IS

 If the failure set is too complex in input space, but mappable to easier latent space, use normalizing flows.



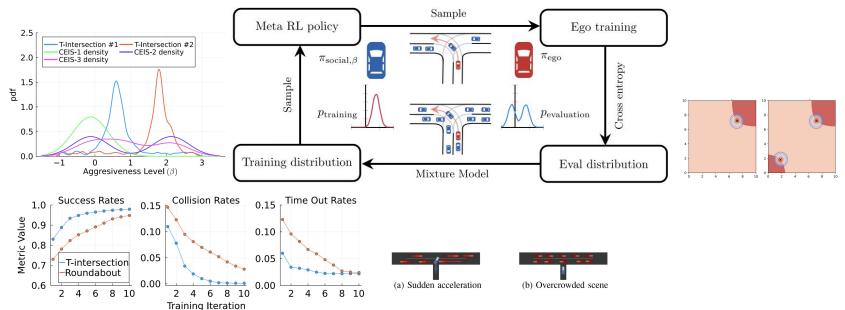
Some more recent work: Normalizing Flow IS

• An example with non-holonomic robot failure rate estimation:



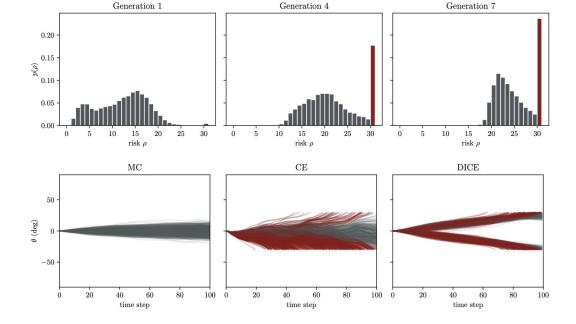
Some more recent work: Integrated validation+training

Can we use the failure modes to generate samples and improve the agent?



Some more recent work: Diffusion model + IS

- Using diffusion models
 as proposal distribution
 (on-going work by Harrison
 Delecki and Marc Schlichting)
- Extensions to dynamic and partially observable environment



Q&A

- Thanks to: Mykel Kochenderfer (Stanford), Jef Caers (Stanford), Ding Zhao (CMU), Henry Lam (Columbia), Bo Li (UIUC), Jiachen Li (UCR), David Isele (HRI)
- Thanks to SISL: Liam Kruse, Harrison Delecki, Marc Schlichting, Anthony Corso, Robert Moss, Sydney Katz, Licio Romao, Kiana Jafari, Duncan Eddy

Let's stay in touch

Mansur M. Arief

Research Engineer, SISL and MineralX Stanford University

Email: mansur.arief@stanford.edu

Web: https://mansurarief.github.io/