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Cyber-Physical Systems (CPSs) are everywhere

Autonomous vehicles Exploratory robots Aircraft collision
avoidance systems

e Interacting with humans more intensively and collaboratively

e Making more important, even safety-critical, decisions
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This Is just the beginning...
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Congrats to NVIDIA's Marco Pavone and Edward Schmerling and the
team at Stanford for the RSS (Robotics: Science and Systems) 2024
Outstanding Paper Award on the topic of Real-Time Anomaly ..more
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As Al is implemented in our daily lives, engaging with #robots and
autonomous vehicles safely will become more important. RSS's L
best paper from Stanford University and NVIDIA presents a
framework designed to improve the trustworthiness of dynamic
robotic systems under resource and time constraints

fj https://nvda.ws/3YCIRN7

Congrats to the winners /"7 #RSS2024
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Congrats to my Ph.D. student James Cunningham and our
collaborators from the Air Force Research Laboratory Dr. Alex A.,
David Ferris, and Phillip Morrone for our recent IEEE journal publication
titled "A Deep Learning Game Theoretic Model for Defending Against
Large Scale Smart Grid Attacks".

A short video-summary of the paper can be viewed below and the
paper can be accessed here: https://Inkd.in/JgUA6-ZSJ. The data and
code for the model can be accessed on GitHub

here: https:/fInkd.in/gu-BxVgH

#deeplearning, #mechanicalengineering, #gametheory
#reinforcementlearning

Attacker can attack n nodes
Defender can defend n nodes

# Of actions for Attacker and Defender:

118 Node Pawer Grid

n=10: 9.75x 10"*
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This Is just the beginning...

0.00000450% -
0.00000400% ~ generative design
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0.00000150% Al safety
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Source: https://books.google.com/ngrams/graph?content=generative+design%2C+Al+safety%2C+safety+validation

but, safety engineering should catch up quickly!
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The risk is real, the impact can be catastrophic!

° °
MaChme HED GM'’s Cruise Loses Its Self-Driving License in San Francisco After a
There's software used across the country to predict future criminals. And it's biased against blacks. Robotaxi Dragged a Person

The California DMV says the company’s autonomous taxis are “not safe” and that Cruise “misrepresented” safety information about its self-driving vehicle

technology.

BERNARD, PARKER
. e
3 HieHrRisk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.

Source: https://www.wired.com/story/cruise-robotaxi-self-driving-permit-revoked-california/

Source: https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing
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Modern CPS uses multimodal sensors,

Three lidar systems A forward facing camera
Radar sensors Self-driving sensors
L5 .

—

\
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!

Source: https://waymo.com/
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... and is robust to some degrees of uncertainty

ACAS-X

%] LINCOLN LABORATORY

2] MassachUsETTS INSTITUTE OF Tec

Airborne Collision
Avoidance System X

All accident rate
(accidents per one
million flights)

All accident rate for
IATA member
airlines

Total accidents

Fatal accidents

Fatalities

Fatality risk

IATA member
airlines' fatality risk

IATA safety statistics

0.80 (1 accident every
1.26 million flights)

0.77 (1 accident every
1.30 million flights)

30

1(0jetand1
turboprop)

72
0.03

0.00

1.30 (1 accident
every 0.77 million
flights)

0.58 (1 accident
every 1.72 million
flights)

42

5(1jetand 4
turboprop)

158

0.02

1.19 (1 accident
every 0.88 million
flights)

0.73 (1 accident
every 1.40 million

flights)

38
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Safe CPSs are challenging to evaluate

) million

August

FOOTAGE 3X SPEED

October

Main challenges, include: . vt
e curse of dimensionality
e curse of rarity

Source: Waymo



http://www.youtube.com/watch?v=OopTOjnD3qY
https://waymo.com/safety/
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Airplane-level safety requires HUGE simulation runs,

Simulation requirements 35

25

Safe zone Conflict zone

() Schematic diagram

N
o
Logio(Required Sample Size)

T
fury
w

Logio(Required Sample Size)

(b) CARLA topview camera

| ran simulations for
about a month to
compare 99.99%
accuracy CV models.

Even more for validating
a 10°® failure rate AV
model.

Arief, Mansur Maturidi. Certifiable Evaluation for Safe Intelligent Autonomy. Diss. Carnegie Mellon University, 2023. 10
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Airplane-level safety requires HUGE simulation runs,

OO T %
N l
Q [: oo O
Airborne Collision P -
Avoidance System X

) P o
P ReD ‘Standards development OpEval  FAA Guidance Operational Use
| « K 9 ®

® o Foon s e
oncept Fiigt L compiete \C Complets
R&D ‘Standards development Lp  FAAGudence
= am Pootot & e
ConcoptFlight Teat FightTestz  ntalions

11
+338.
5

Accepted as standard after validation

* in early 2020s (the method already
developed in several versions)

Mykel developed
ACAS-Xin 2013

Arief, Mansur Maturidi. Certifiable Evaluation for Safe Intelligent Autonomy. Diss. Carnegie Mellon University, 2023.

1




Developing Safe Cyber-Physical Systems for Safety-Critical Applications

... and statistical and engineering rigor

Alrborne Collision
Avoidance System X

Mykel developed
ACAS-Xin 2013

FUNCTIONAL SAFETY SUPPORT THROUGHOUT THE DEVELOPMENT CYCLE

ZBR
IS0 26262
Nz

a
14

CONCEPT PHASE

SAFETY GOALS AND REQUIREMENTS

TECHNICAL SAFETY REQUIREMENTS %

AND SYSTEM DESIGN

HARDWARE DEVELOPMENT

SOFTWARE DEVELOPMENT

SAFETY
VALIDATION

INTEGRATION AND
VERIFICATION
(HARDWARE-SOFTWARE;

SYSTEM LEVEL;

VEHICLE LEVEL)

Arief, Mansur Maturidi. Certifiable Evaluation for Safe Intelligent Autonomy. Diss. Carnegie Mellon University, 2023.
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PRODUCTION,
OPERATION, SERVICE
AND
DECOMMISSIONING
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2014 2015 2018 2017 2018 2019 2020 2023 2024

P .n &D S(a:-ms development op val‘ FAA Guidance A Operational Use.
A IR Intial MOPS FAATSO 8
Concept Fight Test Fight Test compiie AC Complets
R&D Standards development Lip  FAAGudonce
= 2014 Proof of Initol HOPS
Concept Flight Test bR ‘complete

Accepted as standard after validation
in early 2020s (the method already
developed in several versions)

12
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My Vision: Bring the airplane-level safety to CPS

Multi-mobility collaboration for exploration

Efficient inspection robots for semi-controlled
indoor and outdoor area

Ginting, M. F.,, Kim, S. K., Fan, D. D., Palieri, M., Kochenderfer, M. J., & Agha-Mohammadi, A. A. (2024). SEEK: Semantic Reasoning for Object Goal Navigation in Real World Inspection Tasks.
arXiv:2405.09822.

Ginting, Muhammad Fadhil, Kyohei Otsu, Mykel J. Kochenderfer, and Ali-akbar Agha-mohammadi. "Capability-aware task allocation and team formation analysis for cooperative exploration of
complex environments." IROS 2022.

13
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Research Directions

Rigorous and scalable Robust planning Safety-centered
safety validation & monitoring CPS development

14
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Research Directions
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Rigorous and scalable
safety validation

Transportation

Robust planning
& monitoring

Sustainability

Safety-centered
CPS development

Manufacturing

Application Areas

15
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Rigorous and scalable safety validation

e |[f the failure rate is u, smaller u requires larger sample size.

. 10 million Main reason:
Driving .
mileage of Nt P 2% 2 %
AV testin o] m” = g . P
by Waym?) :5::?'?9? ———————————— . 1,000,000 miles
=3 Crashes happen extremely rarely (NHTSA, 2019)

Source: Waymo

16



https://waymo.com/safety/
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How do we sample test scenarios more efficiently?

e Objective: Develop algorithms that can deal with

o extreme rarity and high-dimensional inputs

e Requirements:

o efficiency guarantee and efficient computation

e Proposed algorithms:
o Deep IS: Deep Importance Sampling'

o Deep-PrAE: Deep Probabilistic Accelerated Evaluation?
o CERTIFY: Computationally Efficient and Robust Evaluation of Safety®

'Arief, Mansur, Zhepeng Cen, Zhenyuan Liu, Zhiyuan Huang, Bo Li, Henry Lam, and Ding Zhao. "Certifiable Evaluation for Autonomous Vehicle Perception Systems Using Deep Importance Sampling
(Deep 1S)." In Proceedings of the 2022 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022. [Link]

2Arief, Mansur, Zhiyuan Huang, Guru Koushik Senthil Kumar, Yuanlu Bai, Shengyi He, Wenhao Ding, Henry Lam, and Ding Zhao. "Deep Probabilistic Accelerated Evaluation: A Certifiable Rare-Event
Simulation Methodology for Black-Box Autonomy." In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2021. [Link

3Arief, Mansur, Zhepeng Cen, Huan Zhang, Henry Lam, and Ding Zhao. "CERTIFY: Computationally Efficient Rare-failure Certification of Autonomous Vehicles." Under review for IEEE T-IV. [Link 17



https://arxiv.org/abs/2204.02351
https://arxiv.org/abs/2006.15722
https://arxiv.org/abs/2006.15722
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Importance Sampling (IS)

e Importance Sampling (IS) uses biased distribution to generate test cases
and use importance weights to get unbiased results.

18
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Importance Sampling (IS)

Naturalistic driving conditions:

Key steps:

o> a_o O |

: 1. Start with normal driving
____________ 1,000,000 miles

2. Learn the statistical
model

N
2o R R
0200 l i =30 1(X; €8,)

3. Bias the statistics toward
more aggressive driving

4. Use importance weights

R 1< L p(X;) to obtain unbiased result
==Y 1(X; €8
Eoieasmaessssmenesesiisssiisss l Ha n ; ( < 7) ﬁ(Xl) .
5. Return unbiased
Unbiased result statistics

'Arief, Mansur, Zhepeng Cen, Zhenyuan Liu, Zhiyuan Huang, Bo Li, Henry Lam, and Ding Zhao. "Certifiable Evaluation for Autonomous Vehicle Perception Systems Using Deep Importance Sampling
(Deep 1S)." In Proceedings of the 2022 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022. [Link] 19
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Theoretical guarantees

e Crude technique sampling is inadequate to evaluate rare events
(does not scale well in failure rarity) 3s

e Consider estimating a tiny p with

- 30

w
w

. . |
an estimator i, = = > ", Y;.

N w

%] o
N
w

e Asmall ¢ & high confidence 1-6

P(|fin—p|l >en)<é

is achieved only when

Var(Y; Oes,-, 0.02
n > ( l). Sy
= e2u?
e Thus,asu — 0,n — oo.

=

wv
N
o

=
o

Logio(Required Sample Size)
N
= ]

Logio(Required Sample Size)

Y
v

10
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Theoretical guarantees
e Importance Sampling (IS) uses proposal distribution 5 and computes

n

R 1 1 &
Hp = — 2]1 (Xi c S,Y) L(Xi) = E ZYiL(Xi)/
] =1

L(X;) = p(Xi). = called the importance ratio

21
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Theoretical guarantees

e |S is provably unbiased

(Exylta=E | 21 (X € §,) L(X,)
_ l L _ p(X;)
= LB s 53]
1 p(Xi)(=
e E;L]ﬂ (X; €8,) 5 dX;
— %l);/wn(x € S,) p(X)dX;

I
=

22
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e B,
-
Theoretical guarantees

e IS reduces variance if the proposal distribution: f(x) <1 (x € S,) p(x),
i.e. the naturalistic distribution conditional on the failure set.

e Cross Entropy (CE) minimizes the KL-divergence between the proposal
and this theoretically optimal distribution iteratively

p(Xi)
rglea(;(n—]Z]l(X GS)p (X)lnp o(X;)

under some parametric class 0.

23
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e Intuitively, IS skews the distribution toward failures and use likelihood

ratio to compute an unbiased estimate.

10 10

8 Safe Set 8 Safe Set

) @ )
| output; double click to hide 4 -

Naturalistic distribution, p

S

Proposal dist., p

0 T T T T 0 T T T T
0 2 4 6 8 10 0 2 4 6 8 10

Naturalistic conditions Skewed/aggressive conditions

10

Safe Set

0 2 4 6 8 10
Likelihood ratio conditional
on the failure set 24



. . - _— "o
Developing Safe Cyber-Physical Systems for Safety-Critical Applications l%’,{' MINERAL_X AI SISL

Stanford Intelligent
Systems Laboratory

What does it mean?

e Also applies for multiple failure modes.

Rare-event Set with Rare-event Set with Rare-event Set with Infinitely

One Dominating Point i0 Two Dominating Points Many Dominating Points

[ 75252
[T 7 2ZzZ2& S\ |
L/ B
81 #/%  Dominating XN
,5< points along the
Domina circumference
6 point #1
4 .e
P
-)
ting
2
0 .
0 2 4 6 8 10
Rare-event Set with Rare-event Set with Rare-event Set with Infinitely
1 One Dominating Point Two Dominating Points - Many Dominating Points

8 @ 8
61 6
4 4
2 2
0 T T { 0
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Scaling to high dimensional problems

Neural
network

e Use neural net (NN) to approximate high-dimensional . ..:. ° "o
failure set @ %o

Benefits: Versatile, even to high-dimensions, given a sufficient training set

e Find dominating points using MIP reformulation ,

Benefits: Scalable in depth and complete, given RelLU-activated NNs

Dominating points

e Perform dominating-point-based IS and use NN

predictions as labels 9o
bos %, o %o
Benefits: Unbiased and faster (alleviating the need to run more simulations) ";'g" ° g9
o‘:c
26

'Arief, Mansur, Zhepeng Cen, Zhenyuan Liu, Zhiyuan Huang, Bo Li, Henry Lam, and Ding Zhao. "Certifiable Evaluation for Autonomous Vehicle Perception Systems Using Deep Importance Sampling
(Deep 1S)." In Proceedings of the 2022 25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022. [Link]
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Deep IS: Unbiased, given an accurate approximation

e Suppose NN gives a set approximation 37 ~ S, (the true failure rate)
after training with n; samples. We have, with no = n — nysamples,

Ex~p[fin] = E k3 f;n (X; € 8)) L(X;)
m2 =1
_ i = , ¢(Xi; A, Z)
= Z]E 1 (Xz € S’Y) Ea&% waqb(Xi} {,Z,Z)
= ¢(Xi;; A, %) .. :
E / (X €8,) E@y ] u& wap(Xi;a,5)dX;

_ n_z 1; /]R (X € 8)) p(Xis A, 2)dX;

1 & A
= E]EXNP]I (Xi € Sy)

1
_E]EXNP (Xi € Sy)
n21 1

:],[.
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Deep IS: Unlocks adversarial ML approaches

Generate n1 samples using adversarial attacks (FGSM, Boundary Attack) +

®
surrounding samples.
)
& °® ®
v °) o o° °
RR— o EEE) L. coee o%e
ecooo
@
@ Crash scenario
@ Safe scenario
Adversarial attacks Surrounding samples

e Use log trick for the likelihood ratio during calculation

o\ 4)(Xi;AIZ) s X .- — &
logL(Xl) = log (Za€A7 ZUa‘P(Xi} a, Z)) Bl 10g¢(Xlr M) o8 (ag K Z)) 28
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Deep IS: Numerical experiments

e Deep IS classifier: 4-layer feed-forward RelLU activated neural nets

e Training: 20,000 uniform Stage 1 samples, .
512 batch size, Adam optimizer with f
L2 regularization (speeds up MIP by 20%).

e ICP: Terminates after 100 dominating points
(some appear interpretable, most aren’t)

o o
o O
5 G

False negative rate
o
=
w

0.05

0.00

0.30
- g .
Ry © 0.25
B ° .
2 0.20 :
= :
80.15
2 0.02
E‘g 0.10
ETRE

0 50000 100000 0 50000 100000
Iteration Iteration

29
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Deep IS: Numerical experiments

e Main result: Most accurate vs. other benchmarks (except huge NMC)

o AV Traffic Sign Robustness Evaluation
Q 2
GCJ 10 ® Naive Monte Carlo ® Iter. Robust Deep IS o
> ® DeeplS Cross Entropy € /
§ 10! 3 ® Robust Deep IS ® Adaptive MLS Overestimation

A & 5

D Caiits = ADeepls 9 oil . T

O o1 Underestimation
“s 1 Most accurate ® ‘7
8 10_2 - T T T T T T T
o 0 50 100 150 200 250 300

Acceleration Rate

NNMC
NDeeplS

AccRate =

30
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Further extensions: Deep-PrAE

e What if we have an error, can we prove efficiency? Yes, a conservative one!
10 1 <

Naturalistic distribution® | @ Crash scenario
® safe scenario

@ ®
[ Failure | |safe

Scenario database Failure set approximation
2‘:, I:> ;1 » N I:> .‘1 ,‘,:.:'

distribution a1

o TN
(OIS =] RPN R | I

Terminate Plane cutting #2 Dominating point #2

a z :
! Biasing 2}) - Input Dominating point #1 Plane cutting #1 1 0 T

Mixture-model biasing Aistribution Extracting dominating points 51 Deep‘PrAE
x| N 0o 2 4 6 8 10
Likelihood

° (biasing X1

ORI dtrouton) S :

Poe ecer mm) e With this, we have an upper-bound for the failure

® q \»\/ - g on . .
L A probability, but it is still useful for safety evaluation
More aggressive scenarios Likelihood-ratio-weighted average

31

2Arief, Mansur, Zhiyuan Huang, Guru Koushik Senthil Kumar, Yuanlu Bai, Shengyi He, Wenhao Ding, Henry Lam, and Ding Zhao. "Deep Probabilistic Accelerated Evaluation: A Certifiable Rare-Event
Simulation Methodology for Black-Box Autonomy." In Proceedings of the 24th International Conference on Attificial Intelligence and Statistics (AISTATS). PMLR, 2021. [Link



https://arxiv.org/abs/2006.15722
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Robust planning & monitoring

e \We cannot anticipate all corner cases during training.

In-context stop signs Rare, out-of-context signs
during training in the real world

Stanford Intelligent
ystems Laboratory

32
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Robust planning & monitoring

e \We cannot anticipate all corner cases during training.

99.99% accuracy model Same model
(success detection) (misdetection when noisy)

33
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Robust Operational Design Domain (ODD) Monitoring

Zones

Drivable area

Weather
Scenery Junction
Particulates
Environmental conditions Special structure
[llumination

Road structures
Connectivity

Operational Design Traffic
End users Domain (ODD) for = Dynamic elements —<

Autonomous Vehicles Stibject vehicle

Other road users

_/ Traffic rules
Accessibility Use cases
Semantics Driving norms

Communication channel

) Failback mechanisms
Action space

ODD specifies the conditions for which the system is designed to function properly. 34
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ODD-aware training and deployment improves safety

Importance Sampling-Guided Meta-Training for
Intelligent Agents in Highly Interactive Environments

Mansur Arief, Mike Timmerman, Jiachen Li, David Isele, Mykel J.
Kochenderfer. Under review. W

Honda Research Institute US

e % Uncertainty Estimation & Out-Of-Model-Scope
£ 5/ Detection Through Disentangled Concepts

Romeo Valentin, Sydney Katz, Dylan Asmar, Esen Yel, Mykel Kochenderfer ‘H ‘AH

eeeeeeeeeeeeeeeeee
eeeeeeeeeeeee
uuuuuuuuuuuuuuuuuuuu

Efficient Safety Validation Using Meta-Learning

Marc R. Schlichting, Nina V. Boord, Anthony L. Corso, Mykel J.
Kochenderfer. SAVME: Efficient Safety Validation for Autonomous @A"State
Systems Using Meta-Learning. ITSC 2023.

35
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ODD-aware training and deployment improves safety

T-Intersection #1

25 r Sy
—— T-Intersection #1 —— T-Intersection #2
CEIS-1 density =~ —— CEIS-2 density
2.0 + |=— CEIS-3 density
15 | Training distribution

(red & light blue)

pdf

1.0 | 1stround (green)

05 T 2" round (blue)

0.0

Adgaresiveness Level (3)

Mansur Arief, Mike Timmerman, Jiachen Li, David Isele, Mykel J Kochenderfer. Importance Sampling-Guided Meta-Training for Intelligent Agents in Highly Interactive Environments. ArXiv. 36
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ODD-aware training and deployment improves safety

25 1
) ) Collision Rate
——— T-Intersection #1 —— T-Intersection #2
CEIS-1 density =~ — CEIS-2 density
2.0 + |— CEIS-3 density 0.10
.. d . 0.08
15 | Training distribution
- red &
3 ( ) 0.06 |
1.0 | 1stround (green
(9 ) 0.04 |
N S
0.5 T 2" round (blue) 0.02 <
0.0 2 4 6 8 10

-1 0 1 2 3 Iteration
Adgaresiveness Level (3)

Mansur Arief, Mike Timmerman, Jiachen Li, David Isele, Mykel J Kochenderfer. Importance Sampling-Guided Meta-Training for Intelligent Agents in Highly Interactive Environments. ArXiv. 37
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ODD-aware training and deployment improves safety

Success Rate Collision Rate Timeout Rate
B 0.10
0os | Ig: 0.05
: ¢ 0.08
Q
3 0.04
= 0.06
o 0.90 :
o 0.03 | \
= 0.04 + \
0.85 \
N
3 0.02 \
—o-Actual 0.02 | BT N
—Projected ~~d SR
0.80 : : . . : : : R . : : )
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Iteration

Unavoidable failure cases examples (adversarial behavior and overcrowding)

Mansur Arief, Mike Timmerman, Jiachen Li, David Isele, Mykel J Kochenderfer. Importance Sampling-Guided Meta-Training for Intelligent Agents in Highly Interactive Environments. ArXiv.
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Safety-centered CPS Development

Main question:

Given uncertain and extreme
conditions, how to explore
safely and efficiently to fulfil
mission objectives?

Bouman, A., Ginting, M.F., Alatur, N., Palieri, M., Fan, D.D., Touma, T., Pailevanian, T., Kim, S.K., Otsu, K., Burdick, J. and Agha-Mohammadi, A.A., 2020, October. Autonomous spot: 39
Long-range autonomous exploration of extreme environments with legged locomotion. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
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Applications: post mining, geosteering, blasting, etc.

15T ?‘
O f& 0r<’>
N 2’)’_—8
—O—“zigl
- g% ©
_¢
HP

Solved via AlphaGo-like simulations

On-going work: Mansur Arief, Jef Caers, Mykel Kochenderfer (https://github.com/mansurarief/GeoSteerings.jl/) 40
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Another challenge is vast outdoor exploration

RGB Image VLMaps

B human
ground
sky

car

red backpack
backpack
building
tent
plant
rock

hill
mountain
other

IRRRRnncnong

Sources of uncertainties: Noisy sensors, limited sensor range, vast area, moving obstacles

On-going work: Bernard Lange, Anil Yildiz, Mansur Arief, Mykel Kochenderfer. 41



https://docs.google.com/file/d/1W3SvSFduXJxFBBNW1rq8bQb8FGTFPT_I/preview

Developing Safe Cyber-Physical Systems for Safety-Critical Applications

And, more importantly, safety!

Safety risk for workers

Risk of induced seismicity

42
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Our approach toward safe intelligent autonomy

ALGORITHMS FOR

Algorithms for DECISION MAKING
Optimization

Algorithms

for Validation

Mykel J. Kochenderfer and Tim A. Wheeler

2019 2022 Coming soon!

Soon: Algorithms for Validation book

Mykel Kochenderfer, Anthony Corso, Robert Moss, and Sydney Katz
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Al systems have huge potential for improving safety

%] LINCOLN LABORATORY

The Woymo Driver's collision avoidance e R R

performance in simulated tests
Airborne Collision

Avoidance System X

THE WAYMO
DRIVER
NIEON*
0% 25% 50% 75% 100%
*NON-IMPAIRED, WITH EYES ALWAYS ON THE CONFLICT AVOIDED CRASH W

HUMAN DRIVER THAT DOESN'T EXIST IN THE HUMAN POPULATION MITIGATED CRASH M

CRASH NOT MITIGATED

A next-generation collision avoidance system will hel
Source: https://www.theverge.com/2022/9/29/23377219/waymo-av-safety-study-response-time-crash-avoidance, i 9 X y P
https://waymo.com/waymo-one-san-francisco/, pilots and unmanned aircraft safely navigate the

airspace. 44



https://waymo.com/safety/
https://www.theverge.com/2022/9/29/23377219/waymo-av-safety-study-response-time-crash-avoidance
https://waymo.com/waymo-one-san-francisco/
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But, we have to develop and deploy them cognizantly

AUTOMATION LEVELS OF AUTONOMOUS CARS

LEVEL 0 LEVEL 1 LEVEL 2
=
\
S0 1=} @
There are no autonomous features. These cars can handle one task at These cars would have at least
a time, like automatic braking. two automated functions

LEVEL 3 LEVEL 4

CRB ol

These cars handle “dynamic driving These cars are officially driverless These cars can operate entirely on
tasks] but might still need intervention. | in certain environments. | their own without any driver presence.

45
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How do we integrate airplane-level safety culture into the industry?

Runtime monitoring and
rigorous validation

Success Rate

0.95 /

0.90

Metric Value

0.85

~=-Actual
—Projected

0.80 : - - :
2 4 6 8 10

ODD-aware continuous
development

Risk-cognizant planning
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Geothermal POMDP

. . .. Goal: Reservoir
Reservoir model Well Uncertainty Decisions to .
Max NPV, simulator
measurements make
safety

§

‘ & /\ A A
LB 70N
% A

et A gpe

* Where to place
wells?

* What rate of
injection?

e Well temp e Well temp
e Well pressure e Well pressure

e Our POMDP model ties together Earth and energy sciences, Al/data science,

risk & safety, economics & business analysis
47




. . . — %A
Developing Safe Cyber-Physical Systems for Safety-Critical Applications IO’O%'V"NE':* ALX AI SISL

Stanford Intelligent
Systems Laboratory

Our AlphaGo’s approach for subsurface

save_config(sim_config, sim_config["FILEPATHS"]["config"])
We have run (automated)

println("Setting up action and running simulation...") ~b5k simulations to date...
build_scenario(rw, sim_config)

run_intersect(sim_config)| = 1TB of data files (+1TB of

simulation files, compressed)
ro = ReservoirQutput(num_i=rw.num_i, num_j=rw.num_j, num_k=rw.num_k,

48



https://docs.google.com/file/d/1YEeqv7GwJkiUzVoyPRi3_0OAKqNzyMl4/preview
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Unique Research Directions in MAE

Rigorous and scalable Robust planning Safety-centered
safety validation & monitoring CPS development

FUNCTIONAL SAFETY SUPPORT THROUGHOUT THE DEVELOPMENT CYCLE

TR
IS0 26262
2

> -

CONCEPT PHASE SAFETY
SAFETY GOALS AND REQUIREMENTS VALIDATION PRODUCTION,
OPERATION, SERVICE
AND
TECHNICAL SAFETY REQUIREMENTS DECOMMISSIONING
AND SYSTEM DESIGN

INTEGRATION AND

VERIFICATION
HARDWARE DEVELOPMENT i@} (HARDWARE-SOFTWARE;

SYSTEM LEVEL;
VEHICLE LEVEL)

SOFTWARE DEVELOPMENT

Transportation Sustainability Manufacturing

49
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Thank you!

Mansur Arief
Email: mansur.arief@stanford.edu
Stanford Intelligent Systems Lab (SISL) and MineralX
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