

Developing Safe Cyber-Physical Systems for Safety-Critical Applications

Presented by: Mansur M. Arief, Ph.D.

at the Mechanical and Aerospace Engineering Seminar, Nanyang Technological University, Singapore

August 20, 2024

About Mansur

- Postdoc, AeroAstro Department, Stanford, 2023-present
 - Working with Mykel Kochenderfer at Stanford Intelligent Systems Lab (SISL) and Jef Caers at Mineral-X (Stanford Doerr School of Sustainability)
 - Working with PhD and master students, and RAs on AI for safety and sustainability
- PhD in Mechanical Engineering, Carnegie Mellon, 2023
 - Dissertation at Safe Al Lab: Certifiable Evaluation for Safe Intelligent Autonomy
 - Worked with Ding Zhao and Henry Lam (Columbia IEOR)

- MSE, Industrial & Operations Engineering, University of Michigan, 2018
- BE, Industrial and Systems Engineering, Sepuluh Nopember Institute of Technology, Surabaya, 2014

Cyber-Physical Systems (CPSs) are everywhere

Autonomous vehicles

Exploratory robots

Aircraft collision avoidance systems

- Interacting with humans more intensively and collaboratively
- Making more important, even safety-critical, decisions

This is just the beginning...

This is just the beginning...

but, safety engineering should catch up quickly!

The risk is real, the impact can be catastrophic!

Source: https://www.propublica.org/article/machine-biasrisk-assessments-in-criminal-sentencing

ARIAN MARSHALL BUSINESS OCT 24, 2023 4:31 PM

GM's Cruise Loses Its Self-Driving License in San Francisco After a Robotaxi Dragged a Person

The California DMV says the company's autonomous taxis are "not safe" and that Cruise "misrepresented" safety information about its self-driving vehicle technology.

WIRED

Source: https://www.wired.com/story/cruise-robotaxi-self-driving-permit-revoked-california/

Modern CPS uses multimodal sensors,

... and is robust to some degrees of uncertainty

ACAS-X

IATA safety statistics

ACCIDENT TYPE	2023	2022	5-YEAR AVERAGE (2019-2023)
All accident rate (accidents per one million flights)	0.80 (1 accident every 1.26 million flights)	1.30 (1 accident every 0.77 million flights)	1.19 (1 accident every 0.88 million flights)
All accident rate for IATA member airlines	0.77 (1 accident every 1.30 million flights)	0.58 (1 accident every 1.72 million flights)	0.73 (1 accident every 1.40 million flights)
Total accidents	30	42	38
Fatal accidents	1 (0 jet and1 turboprop)	5 (1 jet and 4 turboprop)	5
Fatalities	72	158	143
Fatality risk	0.03	0.11	0.11
IATA member airlines' fatality risk	0.00	0.02	0.04

Safe CPSs are challenging to evaluate

Main challenges, include:

- curse of dimensionality
- curse of rarity

Airplane-level safety requires HUGE simulation runs,

I ran simulations for about a month to compare 99.99% accuracy CV models.

(b) CARLA topview camera

Even more for validating a 10⁻⁵ failure rate AV model.

Airplane-level safety requires HUGE simulation runs,

ACAS-X in 2013

Accepted as standard after validation in early 2020s (the method already developed in several versions)

... and statistical and engineering rigor

My Vision: Bring the airplane-level safety to CPS

Multi-mobility collaboration for exploration

Ginting, M. F., Kim, S. K., Fan, D. D., Palieri, M., Kochenderfer, M. J., & Agha-Mohammadi, A. A. (2024). SEEK: Semantic Reasoning for Object Goal Navigation in Real World Inspection Tasks. arXiv:2405.09822.

Ginting, Muhammad Fadhil, Kyohei Otsu, Mykel J. Kochenderfer, and Ali-akbar Agha-mohammadi. "Capability-aware task allocation and team formation analysis for cooperative exploration of complex environments." IROS 2022.

Research Directions

Rigorous and scalable safety validation

Robust planning & monitoring

Safety-centered CPS development

Research Directions

Rigorous and scalable safety validation

Transportation

Robust planning & monitoring

Sustainability

Safety-centered CPS development

Manufacturing

Rigorous and scalable safety validation

• If the failure rate is μ , smaller μ requires larger sample size.

Main reason:

Crashes happen extremely rarely (NHTSA, 2019)

How do we sample test scenarios more efficiently?

- Objective: Develop algorithms that can deal with
 - extreme rarity and high-dimensional inputs
- Requirements:
 - efficiency guarantee and efficient computation
- Proposed algorithms:
 - <u>Deep IS</u>: <u>Deep Importance Sampling</u>¹
 - Deep-PrAE: Deep Probabilistic Accelerated Evaluation²
 - <u>CERTIFY</u>: <u>Computationally Efficient and Robust Evaluation of Safety³
 </u>

¹<u>Arief, Mansur, Zhepeng Cen, Zhenyuan Liu, Zhiyuan Huang, Bo Li, Henry Lam, and Ding Zhao.</u> "Certifiable Evaluation for Autonomous Vehicle Perception Systems Using Deep Importance Sampling (Deep IS)." In *Proceedings of the 2022 25th International Conference on Intelligent Transportation Systems (ITSC)*. IEEE, 2022. [<u>Link</u>]

²Arief, Mansur, Zhiyuan Huang, Guru Koushik Senthil Kumar, Yuanlu Bai, Shengyi He, Wenhao Ding, Henry Lam, and Ding Zhao. "Deep Probabilistic Accelerated Evaluation: A Certifiable Rare-Event Simulation Methodology for Black-Box Autonomy." In *Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS)*. PMLR, 2021. [Link]

³Arief, Mansur, Zhepeng Cen, Huan Zhang, Henry Lam, and Ding Zhao. "CERTIFY: Computationally Efficient Rare-failure Certification of Autonomous Vehicles." Under review for IEEE T-IV. [Link]

Importance Sampling (IS)

• Importance Sampling (IS) uses biased distribution to generate test cases and use importance weights to get unbiased results.

Importance Sampling (IS)

Naturalistic driving conditions:

Aggressive driving conditions:

Unbiased result

Key steps:

- 1. Start with normal driving
- Learn the statistical model
- 3. Bias the statistics toward more aggressive driving
- 4. Use importance weights to obtain unbiased result
- 5. Return unbiased statistics

- Crude technique sampling is inadequate to evaluate rare events (does not scale well in failure rarity)
- Consider estimating a tiny μ with an estimator $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n Y_i$.
- A small ϵ & high confidence 1- δ

$$\mathbb{P}\left(|\hat{\mu}_n - \mu| > \epsilon \mu\right) \le \delta$$

is achieved only when

$$n \geq rac{ ext{Var}(Y_i)}{\delta \epsilon^2 \mu^2}.$$

ullet Thus, as $\mu
ightarrow 0, n
ightarrow \infty$.

- 35

30

• Importance Sampling (IS) uses proposal distribution \tilde{p} and computes

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \in \mathcal{S}_{\gamma}) L(X_i) = \frac{1}{n} \sum_{i=1}^n Y_i L(X_i),$$

$$L(X_i) = \frac{p(X_i)}{\tilde{p}(X_i)}$$
. \Rightarrow called the importance ratio

IS is provably unbiased

$$\mathbb{E}_{X \sim \tilde{p}}[\hat{\mu}_n] = \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^n \mathbb{1} \left(X_i \in \mathcal{S}_{\gamma} \right) L(X_i) \right]$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\mathbb{1} \left(X_i \in \mathcal{S}_{\gamma} \right) \frac{p(X_i)}{\tilde{p}(X_i)} \right]$$

$$= \frac{1}{n} \sum_{i=1}^n \int_{\mathbb{R}^d} \mathbb{1} \left(X_i \in \mathcal{S}_{\gamma} \right) \frac{p(X_i)}{\tilde{p}(X_i)} \tilde{p}(X_i) dX_i$$

$$= \frac{1}{n} \sum_{i=1}^n \int_{\mathbb{R}^d} \mathbb{1} \left(X_i \in \mathcal{S}_{\gamma} \right) p(X_i) dX_i$$

$$= \mu.$$

- IS **reduces variance** if the proposal distribution: $\tilde{p}(x) \propto \mathbb{1}$ ($x \in \mathcal{S}_{\gamma}$) p(x), i.e. the naturalistic distribution conditional on the failure set.
- Cross Entropy (CE) minimizes the KL-divergence between the proposal and this theoretically optimal distribution iteratively

$$\max_{\theta \in \Theta} \frac{1}{n_j} \sum_{i=1}^{n_j} \mathbb{1}\left(X_i \in \mathcal{S}_{\gamma}\right) \frac{p(X_i)}{p_{\theta_i}(X_i)} \ln p_{\theta}(X_i)$$

under some parametric class Θ .

What does it mean?

 Intuitively, IS skews the distribution toward failures and use likelihood ratio to compute an unbiased estimate.

Naturalistic conditions

Skewed/aggressive conditions

Likelihood ratio conditional on the failure set

What does it mean?

Also applies for multiple failure modes.

Scaling to high dimensional problems

 Use neural net (NN) to approximate high-dimensional failure set

Benefits: Versatile, even to high-dimensions, given a sufficient training set

Find dominating points using MIP reformulation

Benefits: Scalable in depth and complete, given ReLU-activated NNs

Perform dominating-point-based IS and use NN predictions as labels

Benefits: Unbiased and faster (alleviating the need to run more simulations)

Deep IS: Unbiased, given an accurate approximation

• Suppose NN gives a set approximation $\hat{S}_{\gamma} \approx S_{\gamma}$ (the true failure rate) after training with n_1 samples. We have, with $n_2 = n - n_1$ samples,

$$\begin{split} \mathbb{E}_{X \sim \tilde{p}}[\hat{\mu}_{n}] &= \mathbb{E}\left[\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \mathbb{1}\left(X_{i} \in \hat{\mathcal{S}}_{\gamma}\right) L(X_{i})\right] \\ &= \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \mathbb{E}\left[\mathbb{1}\left(X_{i} \in \hat{\mathcal{S}}_{\gamma}\right) \frac{\phi(\tilde{X}_{i}; \lambda, \Sigma)}{\sum_{a \in \hat{A}_{\gamma}} w_{a} \phi(\tilde{X}_{i}; a, \Sigma)}\right] \\ &= \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \int_{\mathbb{R}^{d}} \mathbb{1}\left(X_{i} \in \hat{\mathcal{S}}_{\gamma}\right) \frac{\phi(\tilde{X}_{i}; \lambda, \Sigma)}{\sum_{a \in \hat{A}_{\gamma}} w_{a} \phi(\tilde{X}_{i}; a, \Sigma)} \sum_{a \in \hat{A}_{\gamma}} w_{a} \phi(\tilde{X}_{i}; a, \Sigma) dX_{i} \\ &= \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \int_{\mathbb{R}^{d}} \mathbb{1}\left(X_{i} \in \hat{\mathcal{S}}_{\gamma}\right) \phi(\tilde{X}_{i}; \lambda, \Sigma) dX_{i} \\ &= \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \mathbb{E}_{X \sim p} \mathbb{1}\left(X_{i} \in \hat{\mathcal{S}}_{\gamma}\right) \\ &\approx \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \mathbb{E}_{X \sim p} \mathbb{1}\left(X_{i} \in \hat{\mathcal{S}}_{\gamma}\right) \\ &= \mu. \end{split}$$

Deep IS: Unlocks adversarial ML approaches

• Generate n_1 samples using adversarial attacks (FGSM, Boundary Attack) + surrounding samples.

Use log trick for the likelihood ratio during calculation

$$\log L(\tilde{X}_i) = \log \left(\frac{\phi(\tilde{X}_i; \lambda, \Sigma)}{\sum_{a \in \hat{A}_{\gamma}} w_a \phi(\tilde{X}_i; a, \Sigma)} \right) = \log \phi(\tilde{X}_i; \lambda, \Sigma) - \log \left(\sum_{a \in \hat{A}_{\gamma}} w_a \phi(\tilde{X}_i; a, \Sigma) \right)_{28}$$

Deep IS: Numerical experiments

- **Deep IS classifier:** 4-layer feed-forward ReLU activated neural nets
- Training: 20,000 uniform Stage 1 samples,
 512 batch size, Adam optimizer with
 L2 regularization (speeds up MIP by 20%).
- **ICP:** Terminates after 100 dominating points (some appear interpretable, most aren't)

Deep IS: Numerical experiments

Main result: Most accurate vs. other benchmarks (except huge NMC)

probability, but it is still useful for safety evaluation

Further extensions: Deep-PrAE

••••••••

Likelihood-ratio-weighted average

More aggressive scenarios

• What if we have an error, can we prove efficiency? Yes, a conservative one!

Robust planning & monitoring

We cannot anticipate all corner cases during training.

In-context stop signs during training

Rare, out-of-context signs in the real world

Robust planning & monitoring

We cannot anticipate all corner cases during training.

Same model (misdetection when noisy)

Robust Operational Design Domain (ODD) Monitoring

ODD specifies the conditions for which the system is designed to function properly.

ODD-aware training and deployment improves safety

Importance Sampling-Guided Meta-Training for Intelligent Agents in Highly Interactive Environments

Mansur Arief, Mike Timmerman, Jiachen Li, David Isele, Mykel J. Kochenderfer, Under review.

Uncertainty Estimation & Out-Of-Model-Scope Detection Through Disentangled Concepts

Romeo Valentin, Sydney Katz, Dylan Asmar, Esen Yel, Mykel Kochenderfer

Honda Research Institute US

Efficient Safety Validation Using Meta-Learning

Marc R. Schlichting, Nina V. Boord, Anthony L. Corso, Mykel J. Kochenderfer. SAVME: Efficient Safety Validation for Autonomous Systems Using Meta-Learning. ITSC 2023.

ODD-aware training and deployment improves safety

T-Intersection #1

ODD-aware training and deployment improves safety

ODD-aware training and deployment improves safety

Safety-centered CPS Development

Main question:

Given uncertain and extreme conditions, how to explore safely and efficiently to fulfil mission objectives?

Applications: post mining, geosteering, blasting, etc.

Solved via AlphaGo-like simulations

Another challenge is vast outdoor exploration

Sources of uncertainties: Noisy sensors, limited sensor range, vast area, moving obstacles

And, more importantly, safety!

Safety risk for workers

Risk of induced seismicity

Our approach toward safe intelligent autonomy

2019

2022

Coming soon!

Soon: Algorithms for Validation book

Mykel Kochenderfer, Anthony Corso, Robert Moss, and Sydney Katz

Al systems have huge potential for improving safety

The Waymo Driver's collision avoidance performance in simulated tests

Source: https://www.theverge.com/2022/9/29/23377219/waymo-av-safety-study-response-time-crash-avoidance, https://waymo.com/waymo-one-san-francisco/,

A next-generation collision avoidance system will help pilots and unmanned aircraft safely navigate the airspace.

But, we have to develop and deploy them cognizantly

Collaboration opportunities

How do we integrate airplane-level safety culture into the industry?

Runtime monitoring and rigorous validation

ODD-aware continuous development

Risk-cognizant planning

Geothermal POMDP

 Our POMDP model ties together Earth and energy sciences, Al/data science, risk & safety, economics & business analysis

Our AlphaGo's approach for subsurface


```
save_config(sim_config, sim_config["FILEPATHS"]["config"])

println("Setting up action and running simulation...")
build_scenario(rw, sim_config)

run_intersect(sim_config)

ro = ReservoirOutput(num_i=rw.num_i, num_j=rw.num_j, num_k=rw.num_k,
```

We have run (automated) ~5k simulations to date...

= 1TB of data files (+1TB of simulation files, compressed)

Unique Research Directions in MAE

Rigorous and scalable Robust planning Safety-centered safety validation & monitoring CPS development

FUNCTIONAL SAFETY SUPPORT THROUGHOUT THE DEVELOPMENT CYCLE

Transportation

Sustainability

Manufacturing

Thank you!

Mansur Arief

Email: mansur.arief@stanford.edu

Stanford Intelligent Systems Lab (SISL) and MineralX